First evidence of middle atmospheric HO2 response to 27 day solar cycles from satellite observations

نویسندگان

  • Shuhui Wang
  • Qiong Zhang
  • Luis Millán
  • King-Fai Li
  • Yuk L. Yung
  • Stanley P. Sander
  • Nathaniel J. Livesey
  • Michelle L. Santee
چکیده

HO2 and OH, also known as HOx, play an important role in controlling middle atmospheric O3. Due to their photochemical production and short chemical lifetimes, HOx are expected to respond rapidly to solar irradiance changes, resulting in O3 variability. While OH solar cycle signals have been investigated, HO2 studies have been limited by the lack of reliable observations. Here we present the first evidence of HO2 variability during solar 27 day cycles by investigating the recently developed HO2 data from the Aura Microwave Limb Sounder (MLS). We focus on 2012–2015, when solar variability is strong near the peak of Solar Cycle 24. The features of HO2 variability, with the strongest signals at 0.01–0.068 hPa, correlate well with those of solar Lyman α. When continuous MLS OH observations are not available, the new HO2 data could be a promising alternative for investigating HOx variability and the corresponding impacts on O3 and the climate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limbviewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three submillimetre instruments and two infrared spectrometers are used, n...

متن کامل

Coupled chemistry climate model simulations of the solar cycle in ozone and temperature

[1] The 11-year solar cycles in ozone and temperature are examined using new simulations of coupled chemistry climate models. The results show a secondary maximum in stratospheric tropical ozone, in agreement with satellite observations and in contrast with most previously published simulations. The mean model response varies by up to about 2.5% in ozone and 0.8 K in temperature during a typica...

متن کامل

Middle Atmospheric Changes Caused by the January and March 2012 Solar Proton Events

The recent 23–30 January and 7–11 March 2012 solar proton event (SPE) periods were substantial and caused significant impacts on the middle atmosphere. These were the two largest SPE periods of solar cycle 24 so far. The highly energetic solar protons produced considerable ionization of the neutral atmosphere as well as HOx (H, OH, HO2) and NOx (N, NO, NO2). We compute a NOx production of 1.9 a...

متن کامل

Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during daytime from 10 to 0.0032 hPa (using day-minus-night differences between 10 and 1 hPa to ameliorate systematic biases) ...

متن کامل

Midlatitude atmospheric OH response to the most recent 11-y solar cycle.

The hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O(3)) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g., the 11-y solar cycle (SC)], resulting in variabilities in related middle atmospheric O(3) chemistry. Here, we present an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015